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Abstract The exterior and interior of plants, aboveground
and belowground, comprise a complex plant micro-
ecosystem, known in recent years as the phytosphere. There
are three components: the phyllosphere, endosphere, and
rhizosphere. Although in comparison with other ecosystems
the phytosphere is small, it similarly includes a great variety
of functional microbes. Among these are certain microbes
that live in symbiotic relationships with plants; these
microbes are known as plant symbionts. Recent research
has shown that these symbionts have tremendous effects
on plant growth, confer resistance to abiotic stresses and
pathogens, aid in the accumulation of metabolites, and have
crucial relationships with other plant-associated microbes in
the phytosphere. We review the ecological effects of plant
symbionts on other microbes, and interactions between plant
symbionts in the phytosphere. In addition, we discuss inter-
nal mechanisms and suggest future hot spots for research.

Keywords Functional microbes . Phytosphere . Plant
symbionts . Ecological effects

Abbreviations
AMF Arbuscular mycorrhizal fungi
ECMF Ectomycorrhizal fungi
DSE Dark septate endophyte
MHB Mycorrhization helper bacteria
PGPB / PGPR Plant growth promoting bacteria / plant

growth promoting rhizobacteria
P Phosphorus
N Nitrogen
K Potassium
VOCs Volatile organic compounds
QS Quorum sensing
TTSS Type III secretion system
TFSS Type IV secretion system
AHL Acyl homoserine lactone

1 Introduction

Symbiosis is the coexistence of diverse organisms. Over
evolutionary time, symbiosis has played a vital role in the
formation of highly organized life and new ecological rela-
tionships (Shtark et al. 2010). In the early Devonian, the first
bryophyte-like land plants had endophytic associations re-
sembling vesicular–arbuscular mycorrhizas (Brundrett
2002). This shows that the evolution of plants from aquatic
to terrestrial environments was closely correlated with plant-
microbe interactions. Because of the importance of plant-
microbe symbioses, researchers have proposed the term
“plant symbiont” (Harman 2011).

Microbes that are able to form symbioses with plants
without causing obvious symptoms, and confer promotional
effects on plant growth, resistance to abiotic and biotic
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stresses, or accumulate metabolites, are plant symbionts. They
exist in huge variety, and can be divided into two groups:
fungal and bacterial. We classify fungal symbionts into three
types, as follows: 1. Mycorrhizal fungi (mainly including
arbuscular mycorrhizal fungi and ectomycorrhizal fungi); 2.
Endophytic fungi (mainly including Type I and Type II endo-
phytes); 3. Special root endophytes (Piriformospora indica
and various dark septate endophytes) (Table 1). The classifi-
cation of bacterial symbionts is more complicated. Terms such
as ‘plant growth promoting rhizobacteria’ (PGPR) / ‘plant
growth promoting bacteria’ (PGPB), ‘mycorrhization helper
bacteria’ (MHB), ‘rhizobia’, and ‘N-fixing bacteria’, are used
repeatedly in the literature, and all refer to bacterial symbionts.
Actually these terms overlap. Figure 1 helps to clarify types of
plant bacterial symbionts. The groups PGPB and PGPR con-
tain the majority of plant bacterial symbionts, and we thus use
these to describe all plant bacterial symbionts. Five subsets
may be identified within PGPB/PGPR, as follows: MHB,
legume rhizobia, non-legume rhizobia, N-fixing bacteria
(diazotrophic bacteria), and various other plant-associated
functional bacteria (Fig. 1). Researchers used to treat rhizobia
as a single, special kind of bacterial symbiont, excluded from
PGPB (Wang et al. 2012). In this review, we classify rhizobia
as a group of PGPB, recognizing that rhizobia are able to
significantly promote plant growth.

The phytosphere is an ideal habitat for attracting
microbes as it provides sufficient nutrition and a compara-
tively stable environment (Saito et al. 2007). Microbes, as
vital biotic factors in the phytosphere, can transition be-
tween trophic states (Kogel et al. 2006; Newton et al.
2010). In addition to plant symbionts there are numerous
other plant-associated microbes. These microbes, like the
introns of the eukaryotic gene, have no obvious function.
However, they are influenced by plant symbionts and may
have vital and unknown effects within the phytosphere. It is
unfortunate that researchers focus on interactions between
plant symbionts and hosts while neglecting the interactions
between plant symbionts and other plant-associated
microbes. We focus, therefore, on the interactions between
plant symbionts and other plant-associated microbes, and
the ecological mechanisms of these interactions.

It is well-known that the evolutionary periods of legume–
rhizobia symbiosis and AMF–plant symbiosis are quite dis-
tinct (60 million years ago and 450 million years ago, respec-
tively) (Bonfante and Genre 2008; Sprent 2008). The plant
symbionts described above have differing periods of evolu-
tion. In addition, they have different spatial distributions with-
in the phytosphere. Some colonize the rhizosphere, while
others colonize the endosphere or phyllosphere (Saito et al.
2007; Compant et al. 2010a; Jansa and Gryndler 2010). De-
spite their different temporal and spatial scales, two or more
different plant symbionts are able to colonize the same plant
under natural or artificial conditions. Given the different eco-
logical functions of plant symbionts, researchers hoped to
create a single multiple-symbiosis model by which the bene-
fits to the plant could be understood. However, this was on the
condition that the ecological functions of the symbionts are
not antagonistic towards each other. To what extent does this
reflect reality? How is this affected by whether the interactions
between plant symbionts are cooperative or competitive? The
second focus of this review is thus the interactions between
symbionts and their ecological mechanisms.

Two additional points must be clarified. The first is that
for plant bacterial symbionts, a single genus or species may
have a distinct role in the phytosphere. The genus Burkhol-
deria, for example, comprises more than 60 species isolated
from a wide range of niches (Suarez-Moreno et al. 2012). In
addition to being clinical human pathogens they are plant
pathogens, N-fixing bacteria, legume nodulators, and endo-
symbionts of Rhizopus microsporus (Weisskopf et al. 2011;
Bontemps et al. 2010; Lackner et al. 2011). “Candidatus
Glomeribacter gigasporarum”, the endocellular bacterium of
Gigaspora margarita, also has a close relationship to
Burkholderia spp. (Bianciotto et al. 2004). These different
roles of Burkholderia spp. are mainly due to the diversity of
plasmidic genetic information within Burkholderia spp. A
second example is Rhizobium radiobacter (formerly Agro-
bacterium tumefaciens); a plant pathogen, plant symbiont of
Sesbania cannabina, or an endobacterium of Piriformo-
spora indica (Wood et al. 2001; Sharma et al. 2008;
Cummings et al. 2009). As plant symbiont, Rhizobium
radiobacter contains no vir genes and lacks tumor-forming

Table 1 Main types of plant
fungal symbionts and represen-
tative strains

Types of fungal
symbiont

Representative strains Reference

Mycorrhizal fungi Glomus intraradices, Gigaspora
margarita, Laccaria bicolor

Bonfante and Anca 2009; Rigamonte
et al. 2010; Ghignone et al. 2012;
Bertaux et al. 2005

Endophytic fungi Neotyphodium / Epichloë, Gilmaniella
sp., Phomopsis liquidambari,
Curvularia protuberata

Yuan et al. 2010b; Porras-Alfaro and
Bayman 2011; Chen et al. 2011;
Wang et al. 2011b; Marquez et al. 2007

Special root endophytes Piriformospora indica, Harpophora
oryzae, Phialocephala fortinii

Oelmüller et al. 2009; Sieber 2002;
Scervino et al. 2009; Yuan et al. 2010a
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ability but harbors a sym-plasmid containing nifH and nodA
genes (Cummings et al. 2009). Whether it behaves as a plant
pathogen or symbiont may depend on the plasmid it con-
tains (Zupan et al. 2000; Cummings et al. 2009).

The second point that must be clarified is that for fungal
symbionts of plants (Neotyphodium / Epichloë, Pi. indica,
Gigaspora margarita and Laccaria bicolor), and their inti-
mate endo-partners (bacteria or viruses) (Bertaux et al.
2003; Jargeat et al. 2004; Marquez et al. 2007; Sharma et
al. 2008; Herrero et al. 2009; Herrero and Zabalgogeazcoa
2011; Petisco et al. 2011). These bacteria and viruses are not
by themselves symbionts; however, because of their vital
effects on their fungal hosts which are vital to plants, we
also regard these bacteria and viruses as plant symbionts.

In short, both the interactions between plant symbionts and
other microbes or between different symbionts, are regarded as
the interactions of microbes in the phytosphere. Their ecolog-
ical mechanisms include: competition for nutrition, and a
strategy for adapting to phytotoxicity, secretion of antibiotics,
production and action of volatile organic compounds, physical
contact, induction of plant systemic resistance, and bio-
communication systems (Fig. 2). Research and review in these
areas will be helpful in explaining and evaluating the ecolog-
ical effects of plant symbionts, and providing theoretical direc-
tion for agricultural applications and ecological protection.

2 Plant symbionts and phyllospheric microbes

The phyllosphere is a very important bioactive interface
between the aerial parts of the plant and the air. It precedes
the fixation of carbon dioxide, and the release of molecular
oxide, thus facilitating primary productivity. According to a
conservative estimate, the phyllospheric area of the world’s
plants is one billion square kilometers, and is colonized by
more than 1026 bacteria (Lindow and Brandl 2003). The
phyllospheric microbial community has therefore a domi-
nant effect on the global carbon-nitrogen cycle. Plant sym-
bionts appear to be able to modify the phyllospheric
microbial community to some degree.

Piriformospora indica was initially isolated from the
Thar desert in India, and is an important root symbiont. This
fungus has been the subject of a great deal of research owing
to the ease with which it may be cultured (Varma et al. 1999;
Deshmukh et al. 2006; Camehl and Oelmüller 2010). Al-
though interactions between Pi. indica and its host are
confined to the rhizosphere, it is interesting that Pi. indica
is able to use signals which move upward, to confer drought
tolerance on Chinese cabbage leaves (Sun et al. 2010). The
transmission from roots to aerial plant parts thus allows
modulation of leaf pathogens. Pi. indica colonization of
tomato can limit the leaf disease severity caused by
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Legume-rhizobia 

Diazotrophic bacteria (N-
fixing bacteria) 

Other various plant associated  functional 
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Fig. 1 The classification of various plant bacterial symbionts. The genus
Burkholderia in β-rhizobia (yellow) includes the following species
whose host plants are mainly Mimosa: Bur. tuberum, Bur. phymatum,
Bur. mimosarum, Bur. nodosa, Bur. sabiae, Bur. caribensis, and Bur.
cepacia. In addition, Bur. tuberum and Bur. phymatum are able to fix
nitrogen in free living conditions (blue). Another β-rhizobial bacterium,
Cupriavidus, only comprises one species Cupriavidus taiwanensis (syn.
Ralstonia taiwanensis). Non-legume rhizobia (brown). Parasponia is the

only non-legume genus able to form a Rhizobium-like symbiosis. This
symbiosis is very similar to the classical rhizobium-legume symbiosis
involving biological nitrogen fixation (BNF) and normal nodulation.
Second, Rhizobium etli and Rhizobium tropici are endophytic bacteria
of maize. Third, Bradyrhizobium spp., Azorhizobium caulinodans, and
Rhziobium leguminosarum bv. trifolii are found with rice. They are able
to modulate plant root architecture and enhance root hairs but have no
BNF or nodulation ability
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Verticillium dahlia, and decrease the concentration of
Pepino mosaic virus in tomato shoots (Fakhro et al. 2010).
Pi. indica modulates the phyllospheric microbial communi-
ty through inducing resistance, pH fluctuation, and Ca2+

signaling (Vadassery et al. 2009). After Pi. indica coloniza-
tion of Arabidopsis it was possible to use jasmonic acid
signaling and the cytoplasmic function of NPR1 to induce
systemic resistance to the leaf pathogen Golovinomyces
orontii (Stein et al. 2008). Using noninvasive electrophysi-
ology, researchers found that as soon as Pi. indica formed a
mutualism with barley, the plant pH changed, and, some
days later, plants with Pi. indica-colonized roots responded
to inoculation of the leaf-pathogenic powdery mildew fun-
gus Blumeria graminis f. sp. hordei with an apoplastic pH
increase in the leaves of about two; significantly different
from the control group. Significant changes in leaf apo-
plastic pH are relevant to the defensive capacity of plants
against leaf pathogens (Felle et al. 2009). The effects of
fungal symbionts on phyllospheric microbes are not con-
fined to Pi. indica. Diverse non-systemic endophytic fungi,
defined as type II endophytes, have a wide distribution and
modulate phyllospheric microbes, in particular, leaf patho-
gens (Porras-Alfaro and Bayman 2011).

Although fungal symbionts occur widely and have wide-
spread effects, most of the pathogens causing great agricul-
tural losses are fungi. The impact of bacteria is minor in
comparison. PGPB were able to colonize the rhizosphere,
rhizoplane, and inner roots, and even move upward to the
aerial parts (Cheng et al. 2010; Compant et al. 2010a). They
are able to affect leaf pathogens. The endophytic bacteria
Achromobacter xylosoxidans and Bacillus pumilus are ef-
fective against leaf pathogens Alternaria sp. and Verticillum
sp. (Forchetti et al. 2010).

Under poor nitrogen conditions, rhizobia and legumes
accrete to form new root organs called ‘nodules’ (Wang et
al. 2012). Researchers have found that symbioses between
legumes and rhizobia or mycorrhizal fungi may affect the
bacterial communities in legume leaves by common signal-
ing pathways (CSPs) or by nodule auto-regulation. In
particular, the abundance of Alphaproteobacteria, Gammap-
roteobacteria, and Firmicutes in phyllospheric microbial
communities has been shown to change greatly. Moreover,
Aurantimonas sp. and Methylobacterium sp. have been
found to be especially sensitive to nodulation phenotypes
(Nishimura et al. 2002; Ikeda et al. 2011). When the same
methods were used on the bacterial communities in stems,
researchers found that the change in proteobacterial abun-
dance was less than that in the phyllosphere. It was sup-
posed that shoot-derived factor (SDF), for the auto-
regulation of nodulation, is produced in the leaves (Sheng
and Harper 1997; Ikeda et al. 2010).

Certainly it was clear that native phyllospheric bacterial
symbionts were able to affect phyllospheric microbes. Phy-
tochemicals have effects on phyllosphere-colonizing
microbes, and the specificity of phytochemicals in different
plants creates different dominant bacterial species (Ruppel
et al. 2008; Schreiner et al. 2009). Research involving a
metaproteogenomic approach to the study of the phyllo-
spheric microbiota associated with the leaves of soybean,
clover, and Arabidopsis thaliana revealed that Sphingomonas
and Methylobacterium were the predominant phyllospheric
members on these three different plant species (Delmottea et
al. 2009). Using axenic Arabidopsis thaliana and known
strains to build a controlled model to study the antagonism
of the phyllosphere-dominant bacteria on leaf pathogens in
situ, has shown that carbon source competition is the

Host plant 
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(One species or one group)  
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Phytotoxicity adaptability  
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QS/Type or  secretion system 
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predominant method by which indigenous Sphingomonas
species antagonize leaf pathogens (Innerebner et al. 2011).

3 Plant symbionts and rhizospheric microbes

The rhizosphere is an intense habitat that includes complex
and various root residues and secretions, such as allelo-
chemicals, saccharides, amino acids, and growth factors.
These substances play important roles in root elongation
and colonization by rhizospheric microbes, and they are
often produced by plant symbionts or affected by plant
symbionts.

Trichoderma species are avirulent plant symbionts with
wide distribution in various ecosystems. Similarly to Pi.
indica, they are easy to culture in vitro (Harman et al.
2004). By mycoparasitism, inducing resistance, producing
antibiotics, and competing for ecological niches and nutri-
tion, these plant symbionts have obvious effects on other
rhizospheric microbes, particularly pathogens (Brotman et
al. 2010). Recent study has shown that although Fusarium
oxysporum f. sp. gladioli produced a secretory toxin, fusaric
acid, harmful to Gladiolus grandiflorus corms, Trichoderma
harzianum T-22 was able to decrease the amount of toxin
secreted and thus protect the corms (Nosir et al. 2011).
Playing the same role as Trichoderma species, Pi. indica
not only suppresses leaf pathogens but also rivals rhizo-
spheric pathogens. When it colonizes barley roots it can
urge roots to secret non-pathogenesis-related proteins to
defend against the root rot pathogen Fusarium graminea-
rum by inducing systemic resistance. However, this antag-
onism does not work in pure culture (Deshmukh and Kogel
2007). This suggests that the interaction of Pi. indica and
Fus. graminearum is mediated by the plant. In addition, it is
possible that the existence of other microbes in the roots
helped the antagonism of Pi. indica, bearing in mind the
intimate association between Pi. indica and several N-fixing
bacteria and Pseudomonas fluorescens (James and Olivares
1997; Oelmüller et al. 2011).

AMF and rhizobia also have symbiotic relationships with
plants, forming mycorrhizae or nodules. Research on Nod
and Myc mutant plants showed that although different nod-
ulation phenotypes had little effect on stem bacterial com-
munities, they had significant effects on rhizospheric
bacterial and fungal communities. Pse. fluorescens, in par-
ticular, has been found exclusively associated with Nod+
soybean roots. Fusarium solani was stably associated with
nodulated (Nod+ and Nod++) roots, and was less abundant
in Nod- soybeans. In contrast, basidiomycetes were
abundant in Nod- soybeans, and less abundant in nodulated
(Nod+ and Nod++) roots. This suggests that rhizobial sym-
biosis is able to change the rhizospheric microbial commu-
nity (Ikeda et al. 2008). Rhizobia, like superstars in a

football team, affect the whole team (the plant) and the other
teammates (microbes). Moreover, researchers have found
that certain rhizospheric bacteria prefer colonizing mycor-
rhizal roots. It appears that rhizobia and AMF have certain
influences on rhizospheric microbes (Offre et al. 2007).
More detailed research found that bacteria in the family
Oxalobacteraceae were highly abundant on AMF hyphae
(Scheublin et al. 2010). Interestingly, the fungal endophyte
Neotyphodium which colonizes the aerial tissues of Italian
ryegrass, was able to modify host rhizo-deposition, and via
this plant-soil feedback, change the soil microbial commu-
nity (Casas et al. 2011). In addition, the endophyte Phomop-
sis liquidambari was able to express a special enzyme
system in vitro to optimize the host soil microenvironment,
thus effectively changing the number of rhizospheric bacte-
ria, fungi, and actinomycetes, enhancing soil enzyme activ-
ity, decreasing pathogen numbers, and degrading phenolic
acid (Chen et al. 2010, 2011). These functions may be
relevant to the endophytes’ expression of saprobic proper-
ties in vitro, and are distinguishable from the functions of
non-endophytic typical saprobes.

4 The interactions of plant symbionts (cooperation
or competition)

It is clear that plants are colonized by more than one kind of
plant symbiont. Different plant symbionts may use the same
symbiotic signals and interact with each other. They either
accrete mutually or are antagonistic towards each other.
Interactions between different plant symbionts are more
complicated than is often thought, and are tripartite: fungi-
plant-fungi, fungi-plant-bacteria, bacteria-plant-bacteria, or
fungi-plant-virus.

4.1 Fungi-plant-fungi interactions

Symbioses with AMF or DSE are very common in the plant
kingdom. However, a recent study observed the co-
occurrence of AMF and DSE in seven macrophyte species
(De Marins et al. 2009). Furthermore, exudates of a DSE
identified as Dreschlera sp. stimulated hyphal growth and
branching of AMF. However, a negative effect on the extra-
matrical phase of the AMF was detected (Scervino et al.
2009). The signal transduction mechanisms of these two
important fungal symbionts into the roots of host plants,
and their effects on the rhizospheric microbial community,
are thus interesting and require further study. In addition,
when ECMF and AMF colonized Eucalyptus at the same
time they competed by a nutrition competition strategy (de
Boer et al. 2005; Raiesi and Ghollarata 2006). Other re-
search has found that environment, particularly soil mois-
ture, rather than host genetics, had an influence on
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colonization by AMF versus ECMF (Gehring et al. 2006).
In addition, AMF have complex interactions with endophyt-
ic fungi. Considering their independent effects, the joint
effects of endophytic fungi and AMF should be even
greater. In fact, the increase in plant performance was
only found to hold for antagonistic endophytes, while
the impact of beneficial endophytes was not altered by
AMF infection (Larimer et al. 2010).

4.2 Fungi-plant-bacteria interactions

Fungi-plant-bacteria interactions in the phytosphere have
become known from recent studies. The main interactions
include ECMF and mycorrhization helper bacteria (MHB),
AMF or ECMF, and endobacteria, Pi. indica and its endo-
bacterium, or PGPR. Beyond these the most important in-
teraction is among rhizobia, AMF, and leguminous plants.

The role of MHB in the establishment and action of
ectomycorrhizal associations has been recently reviewed
by Rigamonte et al. (2010), and we will not elaborate. We
emphasize, however, that most MHB are PGPR, and Pseu-
domonas and Bacillus are the common genera. We presume
that not all bacterial species can establish bacteria-fungi-
plant interactions. Presumably only special bacteria are able
to play key roles in phytospheric ecology.

A new symbiotic model has emerged from one kind of
important endobacterium in the spores of AMF Gigaspora
margarita. From their ribosomal sequences, these bacteria
are identified as belonging to a new taxon—“Candidatus
Glomeribacter gigasporarum”. These bacteria are able to
vertically transmit with the sporulation of the host fungus,
and they have obligate endocellular properties (Bianciotto et
al. 2004). Once the fungi were free from the endobacteria
the fungal spores showed certain morphological changes.
Moreover, without the endobacteria, the growth and branch-
ing of the fungal hyphae were different after treatment with
root exudates, suggesting that these special endobacteria
have an enormous effect on the symbiosis between AMF
and the host plant (Lumini et al. 2007). Using the gene ftsZ
as the marker of bacterial division, in combination with RT-
PCR, researchers have found that when the fungi-plant
symbiosis is established, the population of bacteria is the
largest and the number of bacteria in AMF ex-root hyphae is
larger than in endo-root hyphae (Anca et al. 2009). Strigo-
lactone is a bioactive plant molecule that can stimulate AMF
hyphal growth and promote spore germination, even in the
absence of the plant. When using this substance to stimulate
fungi, researchers found that the number of endobacteria
increased. In contrast, when using this plant-derived sub-
stance to stimulate endobacteria separated from host fungi,
the effect disappeared (Besserer et al. 2006). This suggests
the complexity of the fungi-plant-bacteria interaction
(Bonfante and Anca 2009), and reveals that endobacteria are

like the mitochondria of fungi. When they are present in the
host they can recognize and respond to signals. Once sepa-
rated from the host they become inactive. Of course, with
the growth of AMF, there is increased space and nutrition
available for the endobacteria. This may be another key
reason for this phenomenon. Recent research concerning
the genome of “Ca. Glomeribacter gigasporarum” reveals
that the endobacteria have an extreme dependence on their
host for nutrients and energy, whereas the fungal host is
itself an obligate biotroph, relying on the photosynthetic
plant. In addition, “Ca. Glomeribacter gigasporarum” also
expresses type II and type III secretion systems, and syn-
thesizes vitamin B12, antibiotic- and toxin-resistance mole-
cules, which may contribute to the fungal host’s ecological
fitness (Ghignone et al. 2012). Similarly ECMF Laccaria
bicolor was found to have endobacteria related to Paeniba-
cillus spp. (Bertaux et al. 2003; Bertaux et al. 2005).

Pi. indica belongs in the order Sebacinales; fungi which
are extremely versatile in their mycorrhizal associations, and
almost universally present as symptomless endophytes
(Selosse et al. 2009; Wei et al. 2011). Using quantitative
PCR, denaturing gradient gel electrophoresis (DGGE), and
fluorescence in situ hybridization, researchers detected an
intimate association between Pi. indica and Rhizobium
radiobacter (Sharma et al. 2008). They also found that when
barley seedlings were dip-inoculated with Rhizobium radio-
bacter, systemic resistance to the powdery mildew fungus
Blumeria graminis was stimulated. Moreover, through
screening additional isolates of the Sebacina vermifera com-
plex, three species-specific associations with bacteria from
the genera Paenibacillus, Acinetobacter, and Rhodococcus
were found. In addition, Pi. indica showed an interaction
with several nitrogen-fixing bacteria such as Azospirillum,
Azotobacter chroococcum, Bradyrhizobium, and Burkholde-
ria, resulting in enhanced fungal biomass production
(Oelmüller et al. 2011). In contrast, Pse. fluorescens signif-
icantly suppressed the growth of Pi. indica. Co-cultivation
experiments with Pi. indica showed that Azotobacter chroo-
coccum promoted hyphal proliferation whereas Pse. fluores-
cence lysed the hyphae. Other research found that Pi. indica
was able to promote colonization by PGPB Pse. striata on
maize and mung beans (Singh et al. 2009). This synergistic
action between fungal symbiont and bacterial symbiont on
the host plant provided a new way in which plant symbionts
worked together to promote plant growth. However, such
interactions are not consistent. Investigations of the tripartite
interactions among Paenibacillus lentimorbus, Pi. indica,
and Cicer arietinum found that number of nodules, dry
weight per plant, and N, P, and K uptake by plants were
maximum in Pae. lentimorbus treatment followed by Pae.
lentimorbus : Pi. indica, and Pi. indica, in comparison with
a non-inoculated control (Nautiyal et al. 2010). In addition,
principal component analysis of carbon source utilization
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did not show any clustering among the four samples, sug-
gesting that different combinations of symbionts and plants
formed distinct rhizospheric bacterial communities.

Two well-studied examples of major agricultural and
ecological importance are the widespread arbuscular mycor-
rhizal symbiosis and the Rhizobium–legume symbiosis.
Thirty-two of the 51 studies examining interactions between
AMF and rhizobia showed that plants infected with both
symbionts had greater plant responses than either symbiont
independently or sterile control plants (Larimer et al. 2010).
Increased nodule activity and nutrient uptake by plants was
found, for example, when plants were symbiotic with both
AMF and rhizobia. In addition, colonization by rhizobia was
able to stimulate colonization by AMF. Though these two
symbioses each have a distinct evolutionary period, they
have three vital similarities: 1. The non-legume Parasponia
rhizobium uses a LysM-Type mycorrhizal receptor to rec-
ognize symbiosis signals (Rik et al. 2011). 2. The symbiosis
signals of rhizobia have similar structure to the fungal lip-
ochitooligosaccharide symbiotic signals of arbuscular my-
corrhiza (Maillet et al. 2011). 3. The Rhizobium–legume
symbiosis shares an exocytotic pathway required for arbus-
cule formation (Ivanov et al. 2012). These three similarities
convince us that not only do rhizobia and AMF have an
intimate genetic relationship, they also have complex eco-
logical interactions with their plant hosts.

There are other poorly understood and complex tripartite
interactions among fungi, plants, and bacteria. Fusarium oxy-
sporum, for example, was isolated from an Italian soil that
suppresses Fusarium wilt (Aloi et al. 1994). Research found
that the wild type strain lives in association with a consortium
of bacteria belonging to the genera Serratia, Achromobacter,
Bacillus, and Stenotrophomona. In addition, small volatile
organic compounds (VOCs) emitted from the WT strain neg-
atively influencedmycelial growth in different form species of
Fus. oxysporum, and repressed expression of two putative
virulence genes in a strain of Fus. oxysporum lactucae. How-
ever, when the WT strain was cured of bacterial symbionts it
became a cured form (CU strain) which was pathogenic;
causing wilt symptoms. The VOC profiles of WT and CU
fungi show different composition, and use of the bacterial
VOC had no effect on the growth of the different form species
of Fus. oxysporum examined (Minerdi et al. 2009). Further
research found that theWTstrain promoted lettuce growth and
expansin A5 gene expression through microbial VOC emis-
sions. β-caryophyllene was found to be the main component
of the volatiles released by the WT strain responsible for the
plant growth promotion effect (Minerdi et al. 2011). Con-
versely, the rice pathogenic fungus Rhizopus is pathogen-
ic owing to the internal presence of Burkholderia strains
(Partida-Martinez and Hertweck 2005). These phenomena
show the variability and complexity of the role of accompa-
nying bacteria or endobacteria in tripartite interactions.

4.3 Bacteria-plant-bacteria interactions

Legume rhizobia exist in legume rhizospheres. Their persis-
tence in the soil and their colonization of hosts of rhizobia
have been found to be affected by soil environment and plant
secretions (Wang et al. 2012). The quorum sensing signals of
rhizobia were found to be mimicked by plant secretions
(Bauer and Teplitski 2001; Fray 2002). In most advanced
legume plants, rhizobia were able to pass through infection
threads originating from root hairs, and reach nodule primor-
dium cells formed from re-programmed root cortical cells.
There, the bacteria were released from the infection threads
into the developing nodule cells (Oldroyd et al. 2011). Le-
gume rhizobia include two classes: α-rhizobia and β-rhizobia
(Bontemps et al. 2010). Previous research has found that
different legume crops, such as soybean (Glycine max), alfalfa
(Medicago sativa), bean (Phaseolus vulgaris), and clover
(Trifolium spp.), have their own special dominant α-
rhizobia. Different α-rhizobia were found to compete with
each other, and the results of competition depend on their
ability to complete infection events in a timely manner and
compatibility between host and rhizobia (Graham 2008).With
developing research on β-rhizobia, Burkholderia spp. have
been found to be the most competitive symbionts ofMimosa.
Three α-rhizobia (Rhizobium etli, and two strains of Rhizobi-
um tropici) and two β-rhizobial symbionts (Burkholderia
mimosarum and Cupriavidus taiwanensis) were inoculated
into three invasive Mimosa species for competition studies
(Elliott et al. 2009). Under flooded conditions, Bur. mim-
osarum out-competed Cu. taiwanensis and the other
three α-rhizobia. This was independent of initial
inoculum levels, rates of bacterial growth, rhizobia-
rhizobia growth inhibition, and individual nodulation
rate. Rather, it was determined by environmental N
level. Other interesting research has been carried out investi-
gating the relationship between PGPR Chryseobacterium
balustinum and legume rhizobia (Rhizobium tropici, Rhi-
zobium etli, Ensifer fredii). A co-inoculation assay dem-
onstrated the lack of mutual incompatibility between
rhizobial strains and Chr. Balustinum (Albareda et al.
2006). The presence of PGPR Chr. balustinum was
found to affect the rhizobial capacity to attach to soy-
bean roots.

4.4 Fungi-plant-virus interactions

Recently, as research into grass endophytes has developed,
researchers have found that mycoviruses are common among
different species of endophytic fungi (Herrero et al. 2009).
These fungal symbionts are able to inhabit soil and antagonize
invertebrate plant pests (Herrero and Zabalgogeazcoa 2011;
Petisco et al. 2011). However, the ecological functions of
these mycoviruses are seldom known. The only one which
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is clear is that mycoviruses in the grass endophyte Curvularia
protuberata are able to confer thermal tolerance on their plant
host, a tropical panic grass (Marquez et al. 2007).

5 Mechanisms of ecological interactions concerning
plant symbionts

The ecological interactions of plant symbionts are complex
and mechanisms consequently vary, but are mainly encom-
passed by the six points discussed below. These interaction
mechanisms are not single; most models involve multiple
mechanisms, manifesting in synergistic effects. Serratia
phymuthica, for example, is an antagonistic rhizosphere
bacterium able to suppress symptoms caused by soil-borne
pathogens and stimulate plant growth (Kalbe et al. 1996).
This bacterial symbiont emits a broad spectrum of volatile
organic compounds (VOCs) that are involved in antifungal
activity. GS-MS analyses found that WT strains and AHL-
negative mutants emitted distinct patterns of volatile organic
substances, and this difference in VOCs influenced inhibi-
tory effects on the pathogens Rhizoctonia solani and Verti-
cillium dahlia (Muller et al. 2009). Actually, except for
synergistic effects between quorum sensing (QS) and
VOCs, QS acts together with induction of plant systemic
resistance (Schuhegger et al. 2006), or with antibiotic
production (Liu et al. 2007).

5.1 Nutritional competition and adaptability to phytotoxicity

The phytosphere is rich in nutrition. Some bacteria such
as Pse. fluorescens have magnanimous siderophores,
conferring competitive advantage, occupying ecological
niches and being antagonistic towards other microbes. In
addition, AMF compete with other soil bacteria for avail-
able P in the soil, and when AMF and ECMF colonize
Eucalyptus they compete within the same ecological
niche (de Boer et al. 2005; Raiesi and Ghollarata
2006). Interestingly “Ca. Glomeribacter gigasporarum”
has an extreme dependence on its host for nutrients and
energy, whereas the fungal host itself is an obligate
biotroph that relies on the photosynthetic plant. This
interphyletic network of nutritional interactions is receiv-
ing increasing attention (Ghignone et al. 2012).

Many plants also produce and secrete phytotoxic com-
pounds to inhibit bacterial growth. Bacterial symbionts of
these plants have evolved corresponding mechanisms to
overcome these. Rhizobium etli which normally forms
nitrogen-fixing nodules on Phaseolus vulgaris, is a natural
maize endophyte (Gutierrez-Zamora and Martinez Romero
2001). Several Rhizobium etli types were preferentially en-
countered as putative maize endophytes, because they were
most tolerant of 6-methoxy-2-benzoxazolinone (MBOA), a

maize antimicrobial compound that is inhibitory to some
bacteria and fungi. This means that the host plant is able to
select microbial partners from the environment, and that the
right plant symbiont can survive and develop through its
adaptation to phytotoxic compounds. Similarly Rhizobium
tropici was shown to be a competitive maize endophyte
owing to its adaptation to phytotoxicity (Rosenblueth and
Martinez-Romero 2004).

5.2 Secretion of antibiotics

Environmental microbes, particularly soil and phytosphere-
associated microbes, are the main sources of antibiotics.
Mycorrhizal fungi can secrete antibiotics to select for
resistant bacteria in the mycorrhizosphere and suppress
pathogens. In addition, research has shown that some
fungal secretory enzymes and bacteria producing anti-
biotics take action together to suppress pathogens (Woo
et al. 2002).

5.3 Production and action of volatile organic compounds

Recent data have shown that many species of below-
ground microbes are able to produce VOCs important
for microbial communication (Blom et al. 2011). PGPR
Arthrobacter agilis, isolated from the maize rhizosphere,
was able to promote growth and development of Medi-
cago sativa seedlings. As part of this process, VOCs as
novel signaling molecules are potentially involved in
plant-rhizobacterial interactions and are recognized by
legumes to modulate root development (Velázquez-
Becerra et al. 2011). In addition, VOCs produced by
rhizobacteria are involved in interactions with pathogenic
fungi as well as with host plants (Kai et al. 2007;
Vespermann et al. 2007). Similarly, Muscodor yucatanen-
sis, a tropical endophytic fungus from Bursera simaruba,
produces a complex mixture of VOCs which have a
strong allelochemical effects against other endophytic
fungi, phytopathogenic fungi, fungoids, and plants
(Macías-Rubalcava et al. 2010). The pathogenicity of
Fusarium oxysporum and its relationship with accompa-
nying bacteria were both found to be associated with
VOCs (Minerdi et al. 2009; Minerdi et al. 2011). Inter-
estingly, VOCs produced by rhizospheric strains of Pse.
fluorescens and Serrratia plymuthica seem to have an-
other important effect—quorum sensing (QS) quenching.
They were able to inhibit the cell-to-cell communicative
QS network of various bacteria in the rhizosphere, such
as Agrobacterium, Chromobacterium, Pectobacterium,
and Pseudomonas (Chernin et al. 2011). Through the
QS quenching effect by VOCs, certain rhizospheric plant
symbionts (a minority) may change other rhizospheric
bacterial populations (the majority) which have QS.
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5.4 Physical contact

Trichoderma species are powerful mycoparasitic fungi. Be-
cause of chemotaxis, they grow toward plant pathogens.
Once they contact the host fungus they will twist or grow
along the host’s hyphae. They will then form hooked struc-
tures and secrete extracellular hydrolase to break the host’s
cell walls, penetrating the hyphae (Viterbo and Horwitz
2010). Furthermore, during mycoparasitic attack, Tricho-
derma species can regulate differential orthologous chiti-
nase genes to coordinate with the physical contact (Gruber
et al. 2011). In addition, Pythium oligandrum can coil
around Phytophthora infestans hyphae and parasitize them
(Horner et al. 2012). The omnivorous and cosmopolitan
plant pathogen Sclerotinia sclerotiorum can be infected by
the mycoparasite Coniothyrium minitans (Huang et al.
2011).

5.5 Induction of plant systemic resistance

Plants evolve a series of defensive mechanisms to pro-
tect themselves from various pathogens and pests. Spe-
cific pathogen recognition mechanisms are controlled by
defense genes. These are stimulated by avirulent sym-
bionts and once pathogens infect there will be hyper-
sensitivity to suppress the pathogens and protect the
host plant (Maleck and Dietrich 1999). This often
involves plant cell wall solidification, synthesis of phy-
toalexins, and accumulation of pathogenesis-related pro-
teins (PRs). The stimulation of the plant defense genes
means that the effects spread to the whole plant, form-
ing resistance within uninfected and distant tissues. This
is called systemic acquired resistance (SAR), and sali-
cylic acid is an important signaling component (Pieterse
and Van Loon 1999). Recent research has clearly
shown that plant growth regulatory factors, jasmonic
acid, ethylene, and epibrassinolide play important roles
in the stimulation of plant resistance (Bhardwaj et al.
2010). Exogenously adding the above substances can
induce the production of plant defensins and thionin. In
addition, endophytic fungi and their elicitors can estab-
lish interactions with plants through NO, H2O2, sali-
cylic acid, and jasmonic acid (Wang et al. 2011b; Ren
and Dai 2012). Once plant defense responses are stim-
ulated, downstream products may affect phytosphere-
associated microbes. Non-pathogenic rhizobacteria can
also stimulate systemic defensive responses; this is
called induced systemic resistance (ISR). This does
not require PR protein, but requires ethylene and jas-
monic acid (Mur et al. 1997). Whatever is required as
the main signaling molecule, the plant symbiont can
affect other functional microbes through stimulating
defense responses.

5.6 Bio-communication systems among species
and kingdoms in the phytosphere: Quorum sensing (QS),
the Type III secretion system (TTSS) and the Type IV
secretion system (TFSS)

Bacteria, fungi, and host plants occupy different kingdoms.
The ecological balance of various prokaryotes and eukar-
yotes in the phytosphere requires a powerful bio-
communication network across species or kingdoms
(Witzany 2010). Quorum sensing, the Type III secretion sys-
tem, and the Type IV secretion system are the main communi-
cation modes. In order to transmit messages, bacteria secrete
amino acids, oligopeptides, and fatty acid derivatives. These
are the “communication languages” that are recognized by
autoallergic bacteria or other microbes. Environmental
microbes recognize the phytospheric bacterial community
and make the corresponding modulations according to the
species and concentrations of the signals (Miller and Bassler
2001). The initial description of QS is relevant to symbiosis
(Stevens and Greenberg 1997). Later researchers have found
that plant symbionts such as rhizobia and Burkholderia
graminis, or plant pathogens such as Pse. aeruginosa, Rhi-
zobium radiobacter, and Erwinia carotovora, all have QS
(Rodelas et al. 1999; Barriuso et al. 2008; Suarez-Moreno et
al. 2012). Interestingly, the soil anoxygenic phototrophic
bacterium Rhodopseudomonas palustris can use p-couma-
rate, a major aromatic monomer of lignin polymers, and
acyl-homoserine (acyl-HSL), to produce p-coumaroyl-HSL
as a QS signal (Schaefer et al. 2008). Because the produc-
tion of pC-HSL needs p-coumarate, this QS signal integra-
tes two distinct cues: sufficiently high bacterial population
densities and the availability of a particular exogenous
substrate. Hence it has functions within the bacterial pop-
ulation and is also a cross-kingdom signal relevant to the
host plant. Recently researchers have found that some root-
associated fungi can produce special enzymes to degrade
acyl homoserine lactone (AHL) in vitro (Uroz and Heinonsalo
2008). The importance of the AHL-degrading capacity for the
antagonism of mycorrhizal fungi towards pathogens, and
the relationships between mycorrhizal fungi and their
accompanying bacteria or endobacteria, need further re-
search. In addition, many symbionts such as rhizobia rely
on TTSS to communicate (Marie et al. 2001). TTSS and
its effectors may create a specific approach in which
bacteria and fungi become associated in the phytosphere.
The AMF-specific endobacterium “Ca. Glomeribacter
gigasporarum”, for example, prefers expressing TTSS
when the fungus colonizes the host plant (Bonfante and
Anca 2009). In addition, TFSS as another important
interplay style between bacteria and eukaryotic cells, is
present in certain bacteria such as the plant pathogen
Rhizobium radiobacter, which is also the endobacterium
of Pi. indica (Sharma et al. 2008).
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6 Conclusion and future perspectives

In the phytosphere, the effects of plant symbionts on asso-
ciated microbes require two main research approaches. One
is based on investigation of the phytospheric microbial
community, using culture-dependent and culture-
independent approaches to study the effects of plant sym-
bionts on the rhizosphere, phyllosphere, and stem bacterial
or fungal community structures. This approach amasses a
great volume of data and the analytical mechanisms are a
little crude. The second approach involves using axenic
seedlings or fungicides to create known conditions to study
the effect of certain symbionts on single or multiple known
bacteria. We call this the “bottle experiment” approach. This
approach is able to deeply investigate mechanisms at the
levels of proteins and genes. It is possible to integrate the
above two approaches: first by conducting total community
research and then by using the strain materials and results
from microbial community investigation to design a con-
trolled experiment. The integration is likely to provide more
dependable and deep results.

In terms of technology and methods, previously widely
used methods such as denaturing gradient gel electrophore-
sis (DGGE), the 16S rDNA gene library, Biolog micro-
plating, and phospholipid fatty acid (PLFA) analysis, are
undergoing revolutionary changes. Proteomics now plays a
positive role in large-scale microbial community investiga-
tion, and also in “bottle experiments”, and shows great
investigative power (Marra et al. 2006; Cheng et al. 2010;
Wang et al. 2011a; Wu et al. 2011). In addition, the combi-
nation of RNA fingerprinting and DNA-stable isotope prob-
ing replaces conservative molecular methods at the DNA
level, and various functional gene analyses replace analyses
based on conservative gene sequencing (16S rDNA or 18S
rDNA) (Saito et al. 2007; Ying et al. 2010; Li et al. 2011). In
particular, with the further development of ‘omics’ and
functional gene microarrays, it will be possible in the future
to provide large-scale and holistic information about micro-
bial ecology in the phytosphere very quickly (He et al. 2012;
Huang and Zhou 2012). Many unknown mechanisms will
be revealed. As Sydney Brenner said, “progress in science
depends on new techniques, new discoveries and new ideas,
probably in that order”.

With the development of new technology andmethodology,
research into the effects of plant symbionts on phytosphere-
associated microbes is progressing vigorously. In addition,
research into the interactions between phytosphere-associated
microbes including plant symbionts, and human latent patho-
gens (Bernier et al. 2003; Grafenhan et al. 2011), the effects of
trans-genetic technological applications on agriculture and
ecological safety (Barac et al. 2004; Alberghini et al. 2008;
Hur et al. 2011; Zhang et al. 2011), and the effects of global
climate change on phytosphere-associated microbes

(Antoninka et al. 2009; Compant et al. 2010b; Kivlin et al.
2011) have close relationships with investigations into the
mechanisms employed by plant symbionts. Undoubtedly these
will be hot spots for future research.
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